

Millimeter-Wave High-Power 0.25- μ m Gate-Length AlGaN/GaN HEMTs on SiC Substrates

Randal S. Schwindt, *Student Member, IEEE*, Vipan Kumar, Almaz Kuliev, G. Simin, J. W. Yang, M. Asif Khan, Margaret E. Muir, and Ilesanmi Adesida, *Fellow, IEEE*

Abstract—We report on the CW power performance at 20 and 30 GHz of 0.25 μ m \times 100 μ m AlGaN/GaN high electron mobility transistors (HEMTs) grown by MOCVD on semi-insulating SiC substrates. The devices exhibited current density of 1300 mA/mm, peak dc extrinsic transconductance of 275 mS/mm, unity current gain cutoff (f_T) of 65 GHz, and maximum frequency of oscillation (f_{max}) of 110 GHz. Saturated output power at 20 GHz was 6.4 W/mm with 16% power added efficiency (PAE), and output power at 1-dB compression at 30 GHz was 4.0 W/mm with 20% PAE. This is the highest power reported for 0.25- μ m gate-length devices at 20 GHz, and the 30 GHz results represent the highest frequency power data published to date on GaN-based devices.

Index Terms—GaN, high electron mobility transistors (HEMTs), microwave power, SiC.

I. INTRODUCTION

GALLIUM nitride-based high electron mobility transistors (HEMTs) are excellent candidates for high power and high frequency applications at elevated temperatures [1]–[3]. This is due to the advantageous material properties such as wide bandgap (3.4 eV for GaN to 6.2 eV for AlN) leading to high breakdown fields ($1\text{--}3 \times 10^6$ V/cm) and high saturated electron drift velocity (2.2×10^7 cm/s). Also, the AlGaN/GaN heterostructure with its high conduction band offset and high spontaneous and piezoelectric polarizations exhibits high sheet carrier densities in the 10^{13} cm $^{-2}$ range. As a result of these superior material properties and improving material growth and processing technologies, microwave power densities have been demonstrated that are five to ten times greater than that of GaAs-based devices. A CW power density of 10.7 W/mm with 40% power added efficiency (PAE) has been reported at 10 GHz for a device with 0.3- μ m gate length [4]. At 20 GHz, 3 W/mm CW with 22.5% PAE has been attained for 0.3- μ m gate-length devices [5] and 6.6 W/mm CW with 35% PAE for 0.15- μ m gate-length devices [6]. The highest-frequency power

data published to date is a pulsed-power density of 1.6 W/mm with 26% PAE at 29 GHz for a 0.2- μ m gate-length device [7]. In this letter, we present our results on 0.25- μ m gate-length AlGaN/GaN HEMTs on SiC substrates. These 0.25- μ m gate-length devices exhibited 6.4 W/mm CW saturated output power at 20 GHz and 4.0 W/mm CW at 1-dB compression at 30 GHz. This performance indicates the potential for very high power solid-state amplifiers employing 0.25- μ m gate-length GaN-based HEMTs to replace TWT amplifiers in space-based millimeter-wave communications systems.

II. DEVICE STRUCTURE AND FABRICATION

The layer used in the present study was grown on semi-insulating (0001) 4H-SiC substrates by metal-organic chemical vapor deposition (MOCVD). The epilayer consists of a 100-nm AlN buffer, 2- μ m undoped GaN, a 5-nm undoped Al_{0.25}Ga_{0.75}N spacer, a 10-nm Si-doped ($\sim 5 \times 10^{18}$ cm $^{-3}$) Al_{0.25}Ga_{0.75}N charge supply layer, and a 10-nm undoped Al_{0.25}Ga_{0.75}N barrier layer. Hall measurements showed a sheet carrier concentration of 1.1×10^{13} cm $^{-2}$ and an electron mobility of 1300 cm 2 /volt-s at room temperature on as-grown wafers. The first step for device fabrication was mesa-isolation using Cl₂/Ar plasma in an inductively-coupled-plasma reactive ion etch (ICP-RIE) system. Ohmic contacts were formed by rapid thermal annealing of evaporated Ti/Al/Mo/Au at 840 °C for 30 s [8]. Using on-wafer transfer-length-method (TLM) patterns, the ohmic contact resistance was measured to be ~ 0.35 ohm-mm typically. T-shaped gates (Ni/Au) with gate-length (L_g) of 0.25 μ m were defined using electron-beam lithography. The devices had a gate-width of 100 μ m and a source-drain spacing of 3 μ m. Finally, the devices were passivated with 120-nm thick silicon nitride.

III. DC AND SMALL SIGNAL CHARACTERISTICS

The dc measurements were carried out using an Agilent 4142B modular dc source monitor. Fig. 1(a) shows typical drain current-voltage (I_D - V_{DS}) characteristics for a device. The gate was biased from 2 to -7 V in -1 -V increments. The maximum drain current density is 1300 mA/mm at a gate bias of 2 V and drain bias of 10 V. The excellent nature of the ohmic contacts is shown in the fact that the knee voltage is less than 4 V. Fig. 1(b) shows typical dc extrinsic transconductance and drain current at a drain-source voltage of 6 V. The peak extrinsic transconductance is 275 mS/mm at -3.76 -V gate bias. The threshold voltage V_{th} is -4.6 V, where V_{th} is defined

Manuscript received July 22, 2002; revised September 23, 2002. This work was supported in part by ONR under Contract N00014-01-1-1000 (monitor: Dr. J. Zolper) and Contract N0014-1-1072 (monitor: Dr. J. Zolper) and by TriQuint Semiconductor, Inc., and by the Ballistic Missile Defense Organization (BMDO) under Army SMDC contract DASG60-98-1-0004, monitored by Tarry Bauer, Dr. Brian Strickland, and Dr. Kepi Wu. The review of this letter was arranged by Associate Editor Dr. Rüdiger Vahldieck.

R. S. Schwindt, V. Kumar, A. Kuliev, and I. Adesida are with the Micro and Nanotechnology Laboratory and the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail: schwindt@uiuc.edu).

G. Simin, J. W. Yang, and M. Asif Khan are with the Department of Electrical and Computer Engineering, University of South Carolina, Columbia, SC 29208 USA.

M. E. Muir is with TriQuint Semiconductor, Richardson, TX 75080 USA.
Digital Object Identifier 10.1109/LMWC.2003.810115

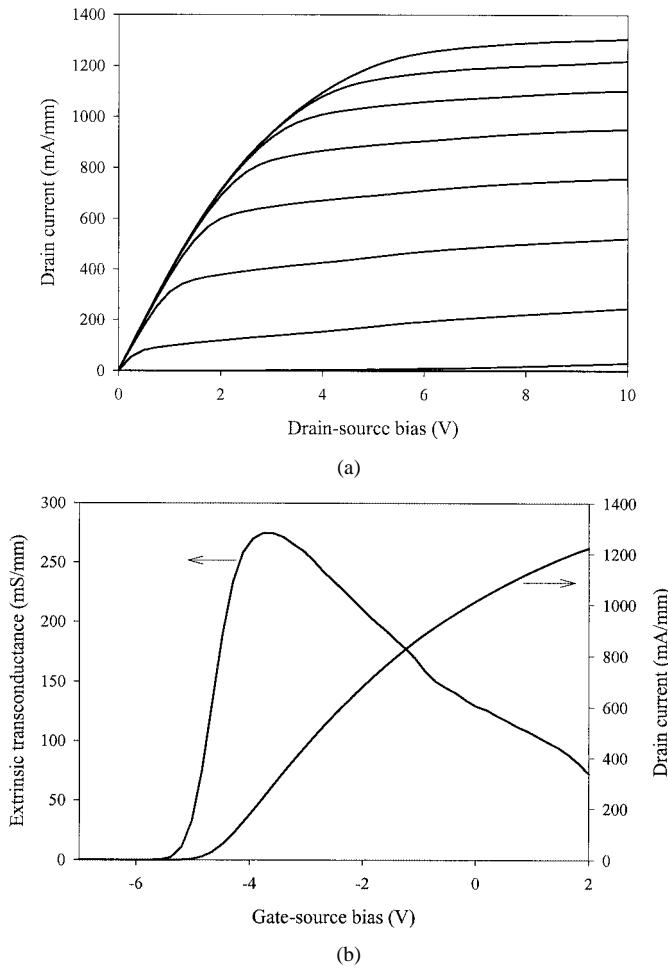


Fig. 1. (a) Drain current-voltage (I_D - V_{DS}) characteristics for $0.25 \text{ pm} \times 100 \text{ pm}$ AlGaN/GaN HEMT on SiC substrate. The gate bias was swept from 2 to -7 V in -1 V increments. (b) DC extrinsic transconductance and drain current versus gate bias of the $0.25 \mu\text{m} \times 100 \mu\text{m}$ AlGaN/GaN HEMT. The drain bias was 6 V .

as the gate bias for which the drain current extrapolates to zero from the maximum transconductance point.

Small signal RF performance is shown in Fig. 2. S -parameter data was taken on an Agilent 8510B network analyzer from 1 to 40 GHz at the device's peak- f_T bias point of 12 V drain-source voltage and -3.75 V gate-source voltage. The f_T of the device is 65 GHz , as determined by extrapolating the short-circuit current gain $|h_{21}|$ at -20 dB/decade . The maximum frequency of oscillation f_{\max} is 110 GHz and is determined by extrapolating the maximum stable gain (MSG) at -20 dB/decade .

IV. LARGE SIGNAL CHARACTERIZATION

Large signal CW measurements were performed using a Focus Microwaves automatic load pull system. The data was taken on-wafer at room temperature without any thermal management. The large signal performance of a device at 20 GHz is shown in Fig. 3. The device was biased with a drain source voltage of 30 V at a drain current of 620 mA/mm . The device has a saturated output power of 6.4 W/mm with an associated gain of 2.9 dB and PAE of 16% . The peak efficiency is 22% with an output power of 5.8 W/mm and gain of 6.1 dB . Fig. 4 shows the large signal performance at 30 GHz . With a drain

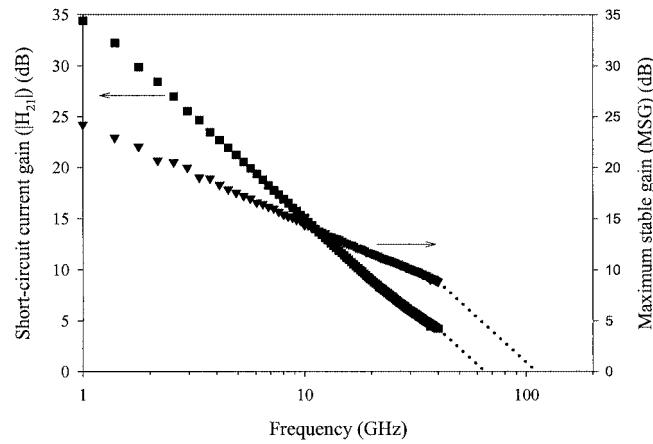


Fig. 2. Short-circuit current gain ($|h_{21}|$) and maximum stable gain (MSG) versus frequency. Extrapolating at -20 dB/decade yields f_T of 65 GHz and f_{\max} of 110 GHz . The device was biased for maximum f_T with $V_{DS} = 12 \text{ V}$ and $V_{GS} = -3.75 \text{ V}$.

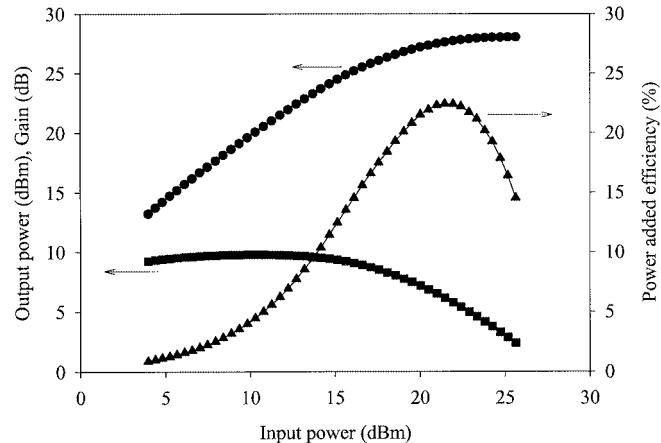


Fig. 3. Large signal performance of the $0.25 \mu\text{m} \times 100 \mu\text{m}$ AlGaN/GaN HEMT at 20 GHz . The device was biased with $V_{DS} = 30 \text{ V}$ and $V_{GS} = -1.87 \text{ V}$. Saturated output power is 6.4 W/mm with 2.9-dB gain and 16% PAE. Maximum PAE is 22% with 5.8 W/mm and 6.1-dB gain .

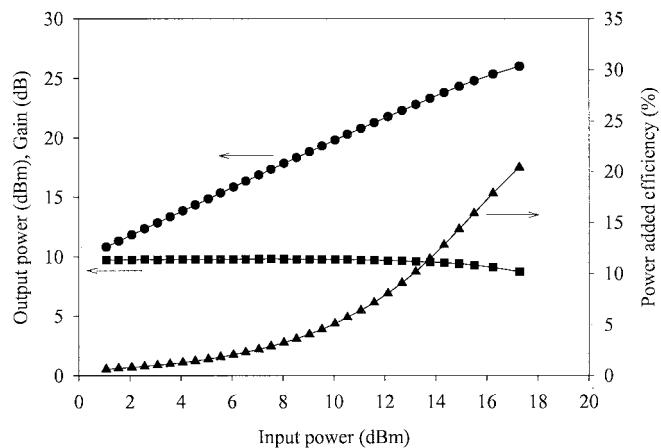


Fig. 4. Large signal performance of the $0.25 \mu\text{m} \times 100 \mu\text{m}$ AlGaN/GaN HEMT at 30 GHz . The device was biased with $V_{DS} = 25 \text{ V}$ and $V_{GS} = -2.22 \text{ V}$. Output power at 1-dB compression at 30 GHz is 4.0 W/mm with 8.7 dB gain and 20% PAE.

voltage of 25 V and drain current of 670 mA/mm , the device output 4.0 W/mm at 30 GHz at 1-dB compression with 8.7-dB

gain and 20% PAE. The device was not tested beyond the 1-dB compression level at 30 GHz because the drive capability of the load pull system was reached. To the best of the authors' knowledge, 6.4 W/mm is the highest power density reported at 20 GHz for a 0.25- μ m gate-length GaN-based HEMT. This is also the first reported CW power performance at 30 GHz for a GaN-based HEMT.

V. CONCLUSION

This letter reports on the CW power performance at 20 GHz and 30 GHz of 0.25 μ m \times 100 μ m AlGaN/GaN HEMTs on SiC substrates. The devices exhibited high current density, transconductance, f_T , f_{max} , and millimeter-wave output power density. Saturated output power at 20 GHz was 6.4 W/mm with 16% PAE, and output power at 1-dB compression at 30 GHz was 4.0 W/mm with 20% PAE, representing the highest power reported for 0.25 μ m gate-length devices at 20 GHz and the highest frequency power data published to date on GaN-based devices. These results indicate the potential of 0.25- μ m gate-length GaN-based HEMTs for very high power solid-state amplifiers to replace TWT amplifiers in space-based millimeter-wave communications systems.

ACKNOWLEDGMENT

The authors would like to thank L. Gooch for assistance with the load pull measurements.

REFERENCES

- [1] Y. -F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, and U. K. Mishra, "Very-high power density AlGaN/GaN HEMTs," *IEEE Trans. Electron Devices*, vol. 48, pp. 586–590, Mar. 2001.
- [2] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, "High power microwave GaN/AlGaN HEMT's on silicon carbide," *IEEE Electron Device Lett.*, vol. 20, pp. 161–163, Apr. 1999.
- [3] N. X. Nguyen, M. Micovic, W.-S. Wong, P. Hashimoto, L.-M. McCray, P. Janke, and C. Nguyen, "High performance microwave power GaN/AlGaN MODFET's grown by RF-assisted MBE," *Electron. Lett.*, vol. 36, pp. 468–469, Mar. 2000.
- [4] V. Tilak, B. Green, V. Kaper, H. Kim, T. Prunty, J. Smart, J. Shealy, and L. Eastman, "Influence of barrier thickness on the high-power performance of AlGaN/GaN HEMTs," *IEEE Electron Device Lett.*, vol. 22, pp. 504–506, Nov. 2001.
- [5] A. Vescan, R. Dietrich, A. Wieszt, A. Shurr, H. Leier, E. L. Piner, and J. M. Redwing, "AlGaN/GaN MODFET's on semi-insulating SiC with 3 W/mm at 20 GHz," *Electron. Lett.*, vol. 36, pp. 1234–1236, July 2000.
- [6] J. S. Moon, M. Micovic, P. Janke, P. Hashimoto, W.-S. Wong, R. D. Widman, L. McCray, A. Kurdoghlian, and C. Nguyen, "GaN/AlGaN HEMT's operating at 20 GHz with continuous-wave power density > 6 W/mm," *Electron. Lett.*, vol. 37, pp. 528–530, Apr. 2001.
- [7] R. Sandhu, M. Wojtowicz, M. Barsky, R. Tsai, I. Smorchkova, C. Namba, P. H. Liu, R. Dia, M. Truong, D. Ko, J. W. Yang, H. Wang, and M. A. Khan, "1.6 W/mm, 26% PAE AlGaN/GaN HEMT operation at 29 GHz," in *IEDM Tech. Dig., Electron Devices Meet.*, 2001, pp. 17.5.1–17.5.3.
- [8] V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida, "Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on *n*-GaN," *J. Appl. Phys.*, vol. 92, pp. 1712–1714, Aug. 2002.