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Abstract—We report on the CW power performance at 20 and
30 GHz of 0.25 pm x 100 pm AlGaN/GaN high electron mobility
transistors (HEMTs) grown by MOCVD on semi-insulating SiC
substrates. The devices exhibited current density of 1300 mA/mm,
peak dc extrinsic transconductance of 275 mS/mm, unity current
gain cutoff (fr) of 65 GHz, and maximum frequency of oscilla-
tion (fmax) Of 110 GHz. Saturated output power at 20 GHz was
6.4 W/mm with 16% power added efficiency (PAE), and output
power at 1-dB compression at 30 GHz was 4.0 W/mm with 20%
PAE. Thisis the highest power reported for 0.25-m gate-length
devices at 20 GHz, and the 30 GHz results represent the highest
frequency power data published to date on GaN-based devices.

Index Terms—GaN, high electron mobility transistors(HEMTS),
microwave power, SiC.

|I. INTRODUCTION

ALLIUM nitride-based high el ectron mobility transistors

(HEMTS) are excellent candidates for high power and
high frequency applications at elevated temperatures [1]-{3].
This is due to the advantageous material properties such as
wide bandgap (3.4 eV for GaN to 6.2 eV for AIN) leading to
high breakdown fields (1-3 x 10° V/cm) and high saturated
electron drift velocity (2.2 x 107 cm/s). Also, the AIGaN/GaN
heterostructure with its high conduction band offset and high
spontaneous and piezoel ectric polarizations exhibits high sheet
carrier densities in the 10'® cm~2 range. As a result of these
superior material properties and improving material growth
and processing technologies, microwave power densities have
been demonstrated that are five to ten times greater than that
of GaAs-based devices. A CW power density of 10.7 W/mm
with 40% power added efficiency (PAE) has been reported at
10 GHz for a device with 0.3-.:m gate length [4]. At 20 GHz,
3 W/mm CW with 22.5% PAE has been attained for 0.3-:m
gate-length devices [5] and 6.6 W/mm CW with 35% PAE for
0.15-;sm gate-length devices [6]. The highest-frequency power
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data published to date is a pulsed-power density of 1.6 W/mm
with 26% PAE at 29 GHz for a 0.2-:m gate-length device [7].
In this letter, we present our results on 0.25-m gate-length
AlGaN/GaN HEMTs on SIC substrates. These 0.25-pm
gate-length devices exhibited 6.4 W/mm CW saturated output
power at 20 GHz and 4.0 W/mm CW at 1-dB compression at
30 GHz. This performance indicates the potential for very high
power solid-state amplifiers employing 0.25-m gate-length
GaN-based HEMTs to replace TWT amplifiers in space-based
millimeter-wave communications systems.

I1. DEVICE STRUCTURE AND FABRICATION

The layer used in the present study was grown on semi-in-
sulating (0001) 4H-SIC substrates by metal-organic chemical
vapor deposition (MOCVD). The epilayer consists of a
100-nm AIN buffer, 2-;xm undoped GaN, a 5-nm undoped
Alg.25Gag 75N spacer, a 10-nm Si-doped (~5 x 10'® cm~3)
Alg.25Gag.7sN charge supply layer, and a 10-nm undoped
Alg 25Gag.7sN barrier layer. Hall measurements showed a
sheet carrier concentration of 1.1 x 10** cm~2 and an electron
mobility of 1300 cm?/volt-s at room temperature on as-grown
wafers. Thefirst step for device fabrication was mesa-isolation
using Cl2/Ar plasmain an inductively-coupled-plasmareactive
ion etch (ICP-RIE) system. Ohmic contacts were formed by
rapid thermal annealing of evaporated Ti/Al/Mo/Au at 840 °C
for 30 s[8]. Using on-wafer transfer-length-method (TLM) pat-
terns, the ohmic contact resistance was measured to be ~0.35
ohm-mm typically. T-shaped gates (Ni/Au) with gate-length
(L) of 0.25 zm were defined using electron-beam lithography.
The devices had a gate-width of 100 ;m and a source-drain
spacing of 3 xm. Finally, the devices were passivated with
120-nm thick silicon nitride.

I1l. DC AND SMALL SIGNAL CHARACTERISTICS

The dc measurements were carried out using an Agilent
4142B modular dc source monitor. Fig. 1(a) shows typical
drain current-voltage (Ip—Vps) characteristics for a device.
The gate was biased from 2 to —7 V in —1-V increments.
The maximum drain current density is 1300 mA/mm at a gate
bias of 2V and drain bias of 10 V. The excellent nature of the
ohmic contacts is shown in the fact that the knee voltageis less
than 4 V. Fig. 1(b) shows typical dc extrinsic transconductance
and drain current at a drain-source voltage of 6 V. The peak
extrinsic transconductance is 275 mS/mm at —3.76-V gate
bias. The threshold voltage V;y, is —4.6 V, where V},, is defined
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Fig. 1. (&) Drain current-voltage (I ,—V'ns) characteristics for 0.25 pm x 100
pm AlGaN/GaN HEMT on SiC substrate. The gate bias was swept from 2 to
—7Vin—1-V increments. (b) DC extrinsic transconductance and drain current
versus gate bias of the 0.25 ym x 100 pm AlGaN/GaN HEMT. Thedrain bias
was 6 V.

as the gate bias for which the drain current extrapolates to zero
from the maximum transconductance point.

Small signal RF performance is shown in Fig. 2. .S-param-
eter datawas taken on an Agilent 8510B network analyzer from
1 to 40 GHz at the device's peak- fr bias point of 12 V drain-
source voltage and —3.75 V gate-source voltage. The fr of the
deviceis 65 GHz, as determined by extrapolating the short-cir-
cuit current gain | i01| a —20 dB/decade. The maximum fre-
guency of oscillation f},,,x iS110 GHz and is determined by ex-
trapolating the maximum stable gain (M SG) at —20 dB/decade.

IV. LARGE SIGNAL CHARACTERIZATION

Large signal CW measurements were performed using a
Focus Microwaves automatic load pull system. The data was
taken on-wafer at room temperature without any thermal man-
agement. The large signal performance of a device at 20 GHz
is shown in Fig. 3. The device was biased with a drain source
voltage of 30 V at adrain current of 620 mA/mm. The device
has a saturated output power of 6.4 W/mm with an associated
gain of 2.9 dB and PAE of 16%. The peak efficiency is 22%
with an output power of 5.8 W/mm and gain of 6.1 dB. Fig. 4
shows the large signal performance at 30 GHz. With a drain
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Fig. 2. Short-circuit current gain (|h21]) and maximum stable gain (MSG)
versus frequency. Extrapolating at —20 dB/decade yields f+ of 65 GHz and
fmax Of 110 GHz. The device was biased for maximum fr withVpe = 12V
and Vaos = =3.75 V.
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Fig. 3. Large signa performance of the 0.25 zm x 100 pxm AlGaN/GaN
HEMT at 20 GHz. The device was biased with Vps = 30 V and Ve, =
—1.87 V. Saturated output power is 6.4 W/mm with 2.9-dB gain and 16% PAE.
Maximum PAE is 22% with 5.8 W/mm and 6.1-dB gain.
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Fig. 4. Large signa performance of the 0.25 zm x 100 pxm AlGaN/GaN
HEMT at 30 GHz. ThedevicewashbiasedwthVps = 25 Vand Vs = —2.22
V. Output power at 1-dB compression at 30 GHz is4.0 W/mm with 8.7 dB gain
and 20% PAE.

voltage of 25 V and drain current of 670 mA/mm, the device
output 4.0 W/mm at 30 GHz at 1-dB compression with 8.7-dB
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gain and 20% PAE. The device was not tested beyond the 1-dB
compression level at 30 GHz because the drive capability of
the load pull system was reached. To the best of the authors
knowledge, 6.4 W/mm is the highest power density reported at
20 GHz for a 0.25-um gate-length GaN-based HEMT. This is
aso the first reported CW power performance at 30 GHz for a
GaN-based HEMT.

V. CONCLUSION

This letter reports on the CW power performance at 20 GHz
and 30 GHz of 0.25 ym x 100 pzm AlGaN/GaN HEMTSs on
SiC substrates. The devices exhibited high current density,
transconductance, fr, fmax, and millimeter-wave output
power density. Saturated output power at 20 GHz was 6.4
W/mm with 16% PAE, and output power at 1-dB compression
at 30 GHz was 4.0 W/mm with 20% PAE, representing the
highest power reported for 0.25 pm gate-length devices at 20
GHz and the highest frequency power data published to date
on GaN-based devices. These results indicate the potential of
0.25-u:m gate-length GaN-based HEMTs for very high power
solid-state amplifiersto replace TWT amplifiersin space-based
millimeter-wave communications systems.
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